Introduction to topological acoustics

Part I

14-16 December 2020

Master Wave Physics & Acoustics

by Antonin Coutant

Brief history

First discovery

- Quantum Hall Effect (1986)
- 2D metal in a strong magnetic field
- Resistivity $\propto 1/n$

Main theory

- Current carried by surface waves
- Integer number of modes
 → topological invariant

Brief history

In the '00

- Quantum Spin Hall Effect
- Same effect but:
 - No magnetic field
 - Uses electron spin
 - Also works in 3D

Since then:

Applications in many fields:

Topology \Rightarrow surface waves with exotic properties

- Photonics
- Acoustics
- Mechanical waves
- Cold atoms

In these lectures:

- Not following history
- Constructive approach:
 Simple models → main ingredients and tools
- Focus on acoustics and mechanics

Approximate plan:

- Periodic system: Bloch-Floquet + examples
- Pinite systems: surface waves and properties
- Tools of topology
- Focus on 1D and then a 2D case

Outline

- Bloch-Floquet formalism
 - A first example
 - General method
- 2 Application to examples
 - Example I: masses and springs
 - Example II: waveguide
- The SSH model
 - Bloch modes
 - Boundary effects

Outline

- Bloch-Floquet formalism
 - A first example
 - General method
- 2 Application to examples
 - Example I: masses and springs
 - Example II: waveguide
- The SSH model
 - Bloch modes
 - Boundary effects

- Label each mass by an integer $n \in \mathbb{Z}$
- Displacement from equilibrium: $X_n(t)$
- Newton's second law:

$$M\ddot{X}_n = -k(X_n - X_{n-1}) - k(X_n - X_{n+1})$$

• Solutions?

- Excitation of a single mass at frequency f?
- Plane wave like:

$$X_n(t) = \operatorname{Re}\left(\underline{\mathbf{x}} e^{-i\omega t + inq}\right)$$

- With
 - $\omega = 2\pi f$: angular frequency
 - q: quasi-wavenumber
 - x: complex amplitude

• Using $X_n(t) = \operatorname{Re}\left(\underline{\mathbf{x}} e^{-i\omega t + inq}\right)$ in

$$M\ddot{X}_n = -k(X_n - X_{n-1}) - k(X_n - X_{n+1})$$

• Dispersion relation:

$$\omega^2 = \frac{4k}{M}\sin^2(q/2)$$

Take away message:

- Solutions are plane wave like
- Range of allowed frequency: passing band
- Dispersive waves
- Periodicity in reciprocal space $q \to q + 2\pi$

General method for periodic systems?

We consider two classes of systems:

- (a) Discrete: chain of equal masses and alternating springs
- (b) Continuous: air channel with changing cross-section

Outline

- Bloch-Floquet formalism
 - A first example
 - General method
- 2 Application to examples
 - Example I: masses and springs
 - Example II: waveguide
- The SSH model
 - Bloch modes
 - Boundary effects

• Eigen-value equation

$$\varepsilon\phi = \hat{H} \cdot \phi$$

- Quantum mechanics analogy
 - Linear operator \hat{H} is called Hamiltonian
 - ε is called energy (usually related to frequency)
- Vectors: ϕ function of $x \in \mathcal{M}$
- \mathcal{M} is configuration space, it can be
 - (a) Discrete: $\mathcal{M} = \mathbb{Z}$
 - (b) Continuous: $\mathcal{M} = \mathbb{R}$
- More generally $\mathcal{M} = \mathbb{Z} \times \mathcal{I}$ or $\mathcal{M} = \mathbb{R} \times \mathcal{I}$
 - \mathbb{Z} or \mathbb{R} : relevant direction with periodicity
 - \mathcal{I} : degrees of freedom not translated (internal, other directions)

Examples

- Two displacements $X_n^A(t)$ and $X_n^B(t)$: $\mathcal{M} = \mathbb{Z} \times \mathcal{I}$
- Fixed frequency $X_n^{A/B}(t) = \operatorname{Re}\left(x_n^{A/B}e^{-i\omega t}\right)$
- Newton's second law

$$\omega^{2}x_{n}^{A} = \frac{k_{1}}{M}(x_{n}^{A} - x_{n}^{B}) + \frac{k_{2}}{M}(x_{n}^{A} - x_{n-1}^{B}),$$

$$\omega^{2}x_{n}^{B} = \frac{k_{1}}{M}(x_{n}^{B} - x_{n}^{A}) + \frac{k_{2}}{M}(x_{n}^{B} - x_{n+1}^{A}).$$

• Hence,

$$\varepsilon = \omega^2$$

 $\hat{H} \cdot \phi = \text{Right-hand side}$

Examples

- Pressure p(x,y): $\mathcal{M} = \mathbb{R} \times \mathcal{I} \ (y \in \mathcal{I})$
- Fixed angular frequency $\omega = kc_0$
- Helmholtz equation

$$k^2 p + \Delta p = 0$$
 in \mathcal{D}
 $\partial_n p = 0$ on $\partial \mathcal{D}$

• Hence,

$$\varepsilon = k^2$$

$$\hat{H} = -\Delta_{\mathcal{D}}$$

Assumption:

- We assume \hat{H} is **self-adjoint** (or **hermitian**)
- Define scalar product

$$\langle \phi_1 | \phi_2 \rangle = \sum_{\mathcal{M}} \phi_1(x)^* \phi_2(x)$$
 (discrete)
 $\langle \phi_1 | \phi_2 \rangle = \int_{x \in \mathcal{M}} \phi_1(x)^* \phi_2(x) dx$ (continuous)

• Self-adjoint means

$$\langle \phi_1 | \hat{H} \cdot \phi_2 \rangle = \langle \hat{H} \cdot \phi_1 | \phi_2 \rangle$$

• if \hat{H} is a matrix, it means $\hat{H} = \hat{H}^{*T}$

Assumption:

- We assume \hat{H} is **self-adjoint** (or **hermitian**)
- Very convenient: spectral theorem
 - Basis (ϕ_j) such that

$$\varepsilon_j \phi_j = \hat{H} \cdot \phi_j$$

- Orthonormal $\langle \phi_j | \phi_{j'} \rangle = \delta_{jj'}$
- Interpretation: usually comes from **energy conservation**
- Careful: has to be checked case by case

Periodic systems

- $\mathbf{a} \in \mathcal{M}$ such system is invariant under translation by \mathbf{a}
- Also invariant under $n \times \mathbf{a}$ (n integer) \rightarrow smallest \mathbf{a} optimal

Examples

• Translation operator $T_{\mathbf{a}}$

$$(T_{\mathbf{a}} \cdot \phi)(x) = \phi(x + \mathbf{a})$$

• Periodicity means

$$T_{\mathbf{a}} \cdot \hat{H} \cdot T_{\mathbf{a}}^{-1} = \hat{H}$$

• This is equivalent to $T_{\mathbf{a}} \cdot \hat{H} = \hat{H} \cdot T_{\mathbf{a}}$ \Rightarrow co-diagonalization

• Diagonalize $T_{\mathbf{a}}$ first

$$T_{\mathbf{a}} \cdot \phi = \lambda \phi$$

• But $T_{\mathbf{a}}$ conserves norm (unitary operator)

$$||T_{\mathbf{a}} \cdot \phi||^2 = \int_{\mathcal{M}} |\phi(x+a)|^2 dx = \int_{\mathcal{M}} |\phi(x)|^2 dx$$

hence, $\lambda = e^{iq}$

- Reciprocal periodicity $q \to q + 2\pi$
- Restricted to $-\pi < q \le \pi$ (first Brillouin zone)

• Eigen-vector of $T_{\mathbf{a}}$ satisfies Bloch condition

$$\phi(x+\mathbf{a}) = e^{iq}\phi(x)$$

• Alternative form: plane wave times periodic function

$$\phi(x) = e^{i\kappa x} U(x)$$

with U periodic: $U(x + \mathbf{a}) = U(x)$ and $\kappa = q/a$

- For a given $-\pi < q \le \pi$
- Solution of Bloch condition $\varphi(q): x \mapsto \varphi(q;x)$
- Bloch eigen-value problem

$$H(q) \cdot \varphi(q) = \varepsilon(q)\varphi(q)$$

- Bloch Hamiltonian $H(q) = Q(q) \cdot \hat{H} \cdot Q(q)$ $\rightarrow Q$ projector on q-space
- H(q) as a discrete spectrum: $\varepsilon_j(q) \to \text{energy band}$ (\sim frequency bands)

Bloch-Floquet in a nutshell

Bloch waves:

- System invariant under $x \to x + \mathbf{a}$
- Look for solution of the form

$$\varphi_q(x+a) = e^{iq}\varphi_q(x)$$

• $\kappa = q/a$ is Bloch wavenumber (We call q Bloch wavenumber when no ambiguity)

Bands and gaps:

• Eigen-value problem restricted to φ_q

$$H(q) \cdot \varphi_q = \varepsilon(q)\varphi_q$$

• Discrete eigen-values $\varepsilon_j(q) \to \text{bands}$

Application to our 2 examples

- (a) Discrete: chain of equal masses and alternating springs
- (b) Continuous: air channel with changing cross-section

Outline

- Bloch-Floquet formalism
 - A first example
 - General method
- 2 Application to examples
 - Example I: masses and springs
 - Example II: waveguide
- 3 The SSH model
 - Bloch modes
 - Boundary effects

Outline

- Bloch-Floquet formalism
 - A first example
 - General method
- 2 Application to examples
 - Example I: masses and springs
 - Example II: waveguide
- 3 The SSH model
 - Bloch modes
 - Boundary effects

• Translation operator

$$T_{\mathbf{a}}: \begin{cases} x_n^A \to & x_{n+1}^A \\ x_n^B \to & x_{n+1}^B \end{cases}$$

• Bloch condition solved for

$$\begin{aligned}
x_n^A &= e^{inq} \varphi_A \\
x_n^B &= e^{inq} \varphi_B
\end{aligned}$$

Newton's second law

$$\omega^{2}x_{n}^{A} = \frac{k_{1}}{M}(x_{n}^{A} - x_{n}^{B}) + \frac{k_{2}}{M}(x_{n}^{A} - x_{n-1}^{B})$$

$$\omega^{2}x_{n}^{B} = \frac{k_{1}}{M}(x_{n}^{B} - x_{n}^{A}) + \frac{k_{2}}{M}(x_{n}^{B} - x_{n+1}^{A})$$

• (Recall $\varepsilon = \omega^2$.) Bloch eigen-value problem

$$\varepsilon \varphi_A = \frac{k_1}{M} (\varphi_A - \varphi_B) + \frac{k_2}{M} (\varphi_A - e^{-iq} \varphi_B),$$

$$\varepsilon \varphi_B = \frac{k_1}{M} (\varphi_B - \varphi_A) + \frac{k_2}{M} (\varphi_B - e^{iq} \varphi_A).$$

• Bloch Hamiltonian

$$H(q) = \frac{1}{M} \begin{pmatrix} k_1 + k_2 & -k_1 - k_2 e^{-iq} \\ -k_1 - k_2 e^{iq} & k_1 + k_2 \end{pmatrix}$$

• Eigen-values

$$\varepsilon = \frac{k_1 + k_2}{M} \pm \frac{|k_1 + k_2 e^{iq}|}{M}$$

- Simplify the model: define $\omega_0 = (k_1 + k_2)/M$ (mean frequency)
- Redefine $\varepsilon = 1 \omega^2/\omega_0^2$ (relative frequency shift)
- Then the Bloch Hamiltonian becomes

$$H(q) = \begin{pmatrix} 0 & s + te^{-iq} \\ s + te^{iq} & 0 \end{pmatrix}$$

- \rightarrow This is the Su-Schrieffer-Heeger (SSH) model
- → We will study this model in depth

Outline

- Bloch-Floquet formalism
 - A first example
 - General method
- 2 Application to examples
 - Example I: masses and springs
 - Example II: waveguide
- The SSH model
 - Bloch modes
 - Boundary effects

• Translation operator

$$T_{\mathbf{a}}: p(x,y) \to p(x+a,y)$$

Bloch condition

$$p(x+a,y) = e^{iq}p(x,y) \leftarrow$$

• Alternative form

More convenient in practice

$$p(x,y) = e^{iqx/a}U(x,y)$$

• Eigen-value problem

$$\varepsilon \phi = -\Delta \phi \quad \text{on} \quad \mathcal{D}$$

$$\partial_n \phi = 0 \quad \text{on} \quad \partial_1 \mathcal{D}$$

$$\phi(x+a,y) = e^{iq} \phi(x,y) \quad \text{on} \quad \partial_2 \mathcal{D}$$

- Simplification for narrow tubes $L \ll a$
- Along a piece of tube (constant section)

$$p'' + k^2 p = 0$$

• Cross-section changes: p and acoustic debit continuous

$$L_1 u_A^- = L_2 u_A^+$$

• Integrating along tubes

$$\varepsilon p_n^A = tp_{n-1}^B + sp_n^B$$

$$\varepsilon p_n^B = tp_{n+1}^A + sp_n^A$$

• With $\varepsilon = \cos(\omega a/2c_0)$ and

$$s = \frac{L_2}{L_1 + L_2} \qquad t = \frac{L_1}{L_1 + L_2}$$

Example II

• Bloch problem \rightarrow **SSH model** again

Outline

- Bloch-Floquet formalism
 - A first example
 - General method
- 2 Application to examples
 - Example I: masses and springs
 - Example II: waveguide
- 3 The SSH model
 - Bloch modes
 - Boundary effects

Outline

- Bloch-Floquet formalism
 - A first example
 - General method
- 2 Application to examples
 - Example I: masses and springs
 - Example II: waveguide
- 3 The SSH model
 - Bloch modes
 - Boundary effects

Lattice model

• Eigen-value problem $\varepsilon \phi = H \cdot \phi$

$$\mu = A \text{ or } B \tag{n,μ} \qquad \begin{matrix} (n,\mu) & & t & \\ & & & \\$$

• Eigen-value problem $\varepsilon \phi = H \cdot \phi$

$$\begin{split} \varepsilon\phi_n^A &= t\phi_{n-1}^B + s\phi_n^B \\ \varepsilon\phi_n^B &= t\phi_{n+1}^A + s\phi_n^A \end{split}$$

• Assume s > 0 and t > 0

• Bloch condition

$$\phi_n^A = e^{inq} \varphi_A$$
$$\phi_n^B = e^{inq} \varphi_B$$

• Bloch eigen-value problem

$$\varepsilon \begin{pmatrix} \varphi_A \\ \varphi_B \end{pmatrix} = \begin{pmatrix} 0 & s + te^{-iq} \\ s + te^{iq} & 0 \end{pmatrix} \cdot \begin{pmatrix} \varphi_A \\ \varphi_B \end{pmatrix}$$

• Bloch eigen-value problem

$$\varepsilon \begin{pmatrix} \varphi_A \\ \varphi_B \end{pmatrix} = \begin{pmatrix} 0 & s + te^{-iq} \\ s + te^{iq} & 0 \end{pmatrix} \cdot \begin{pmatrix} \varphi_A \\ \varphi_B \end{pmatrix}$$

• As before: two bands and a gap

$$\varepsilon = \pm |s + te^{iq}|$$

• Gap between $\pm |s-t|$

Outline

- Bloch-Floquet formalism
 - A first example
 - General method
- 2 Application to examples
 - Example I: masses and springs
 - Example II: waveguide
- 3 The SSH model
 - Bloch modes
 - Boundary effects

Finite chain

- Going back to masses and spring system
- Boundary conditions: last masses attached to hard walls

Finite chain

• Eigen-value problem $\varepsilon \phi = H \cdot \phi$

$$\begin{array}{lcl} \varepsilon\phi_n^A & = & s\phi_n^B + t\phi_{n-1}^B, & \quad (2 \leq n \leq N) \\ \varepsilon\phi_n^B & = & s\phi_n^A + t\phi_{n+1}^A, & \quad (1 \leq n \leq N-1) \end{array}$$

and at the edges

$$\begin{array}{lcl} \varepsilon\phi_1^A & = & s\phi_1^B \\ \varepsilon\phi_N^B & = & s\phi_N^A \end{array}$$

Finite chain

• Comparing Bloch spectrum with finite spectrum Energy band

Recap'

Bloch-Floquet method

- Periodic systems
- Bloch condition

$$\phi(x+a) = e^{iq}\phi(x)$$

- Bloch eigen-value problem $\varepsilon(q)\varphi = H(q) \cdot \varphi$
- $\varepsilon(q)$ gives energy bands (\sim frequency bands)

The SSH model

- Two bands
- Finite systems: edge effects?

That's all folks

Some references:

• Bloch-Floquet:

[Deymier "Acoustic metamaterials and phononic crystals" (2013)] [Ashcroft, Mermin "Solid state physics" (1976)]

• Reviews with treatment of SSH model:

[Asboth, Oroszlany, Palyi "A short course on topological insulators" (2016)]

[Dalibard "La matière topologique et son exploration avec les gaz quantiques" (2017)]