Introduction to topological acoustics

Part 1

14-16 December 2020

Master Wave Physics & Acoustics

Institut d’Acoustique ;
LG B Laborateire d'Acoustique
Graduate School LAU LeMansUniversitévCNRS-UMH‘gsu

Le Mans Université

by Antonin Coutant



Brief history

First discovery
o Quantum Hall Effect
(1986)

@ 2D metal in a strong
magnetic field

o Resistivity o< 1/n
Main theory

o Current carried by
surface waves

] e Integer number of modes
; — topological invariant
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Brief history

In the ’00
o Quantum Spin Hall Effect

. e Same effect but:

o No magnetic field
o Uses electron spin
e Also works in 3D
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Since then:
Applications in many fields:
Topology = surface waves with exotic properties
o Photonics
e Acoustics
@ Mechanical waves

e Cold atoms
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In these lectures:
o Not following history

o Constructive approach:
Simple models — main ingredients and tools

@ Focus on acoustics and mechanics
Approximate plan:

@ Periodic system: Bloch-Floquet + examples

@ Finite systems: surface waves and properties

@ Tools of topology

@ Focus on 1D and then a 2D case
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Bloch-Floquet formalism o ; .
A first example

General method

Outline

@ Bloch-Floquet formalism
e A first example
@ General method
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Bloch-Floquet formalism A frst example

General method

Outline

@ Bloch-Floquet formalism
e A first example

© Application to examples

© The SSH model
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Bloch-Floquet form

rst example
General method

First example: Chain of masses and springs

Mass number n

o Label each mass by an integer n € Z

Displacement from equilibrium: X, (%)

Newton’s second law:

MX, = —k(X, — Xp_1) — k(Xn — Xns1)

@ Solutions?

Topological acoustics



Bloch-Floquet form

rst example
General method

First example: Chain of masses and springs

Mass number n

o Excitation of a single mass at frequency f7

o Plane wave like:
Xn(t) — Re (X efithrinq)

o With
o w =27 f: angular frequency
e ¢: quasi-wavenumber
e x: complex amplitude

Topological acoustics



Bloch-Floquet formalism

A first example
General method

First example: Chain of masses and springs

Mass number n

o Using X,,(t) = Re (x e"™!n4) in

MX, = —k(X, — Xp_1) — k(Xn — Xnt1)
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Bloch-Floquet form

rst example
General method

First example: Chain of masses and springs

1 \ \
! !
o ! !
Sos5; | | 1
3 | |
! !
! !
ol L N !
-6 4" 2 0 2 T o4 6
q
o Dispersion relation:
4k
2 .2
w® = —sin 2
17 sin(a/2)

Take away message:
@ Solutions are plane wave like
o Range of allowed frequency: passing band
@ Dispersive waves
o Periodicity in reciprocal space ¢ — q + 27
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Bloch-Floquet formalism

A first example
General method

General method for periodic systems?

@
i‘ kl ik?g
AR AR
oMM
(b) :””””””:
T Ijl I;I | 1 [
I Iil I?I | J | I

We consider two classes of systems:
(a) Discrete: chain of equal masses and alternating springs

(b) Continuous: air channel with changing cross-section
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Bloch-Floquet formalism - )
A first example

General method

Outline

@ Bloch-Floquet formalism
@ General method

© Application to examples

© The SSH model
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Bloch-Floquet formalism

A first example
General method

General framework

Eigen-value equation

agb:fl-gﬁ

(]

Quantum mechanics analogy
o Linear operator H is called Hamiltonian
o ¢ is called energy (usually related to frequency)
Vectors: ¢ function of z € M
M is configuration space, it can be
(a) Discrete: M =7
(b) Continuous: M =R
@ More generally M =Z xZor M=RxZT
Z. or R: relevant direction with periodicity

(]

(]

Z: degrees of freedom not translated (internal, other directions)
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Bloch-Floquet formalism

A first example
General method

Examples
@
' k?l ik’g
BV B |
M M

Two displacements X/'(t) and XP(t): M =Z x 1T
. A/B A/B ot
Fixed frequency X,’" (t) = Re (xn e )

Newton’s second law

k1 ko
(/J2$ﬁ = M(mg‘ - xn) + M(:En - xn—l)v
k1 ko
= Mar R )
Hence,
£ = w?

H - ¢ = Right-hand side
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Bloch-Floquet formalism

A first example
General method

Examples
(b)
i LT L L r
U Tl TN

Pressure p(z,y): M =R xZ (y € 7)
Fixed angular frequency w = kcg
Helmholtz equation
Ep+Ap =
6np =
Hence,
e =k
H=-Ap
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Bloch-Floquet formalism

A first example
General method

Assumption:
o We assume H is self-adjoint (or hermitian)

@ Define scalar product

(D1lp2) = Z¢1(x)*¢2(x) (discrete)
M

(p1]p2) = / ¢1(x)" po(z)dx (continuous)
reM
o Self-adjoint means
(p1|H - ¢o) = (H - 1)

e if H is a matrix, it means H = H*7
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Bloch-Floquet form

A first example
seneral method

Assumption:

We assume H is self-adjoint (or hermitian)

Very convenient: spectral theorem
o Basis (¢;) such that

ejd; =H &
o Orthonormal (¢;|¢;/) = d;;

Interpretation: usually comes from energy conservation

o Careful: has to be checked case by case

Topological acoustics



Bloch-Floquet formalism

A first example
seneral method

Periodic systems
@ a € M such system is invariant under translation by a

e Also invariant under n x a (n integer) — smallest a optimal

Examples
(a) a
LM MG
)y e %ﬁ ,,,,,, G




Bloch-Floquet form

A first example
seneral method

General framework

e Translation operator T,
(Ta - 9) () = ¢(z +a)
@ Periodicity means

Ta-H-T7 ' =H

@ This is equivalent to T, - H=H- Ty
= co-diagonalization

Topological acoustics



Bloch-Floquet form

A first example
seneral method

General framework

(]

Diagonalize T, first
Ta- ¢ = Ao

e But T, conserves norm (unitary operator)
1T 0l = [ Jow+a)Pds = [ Jo@)Pda
M M

hence, A = ¢*?

(]

Reciprocal periodicity ¢ — q + 27

Restricted to —m < ¢ < 7 (first Brillouin zone)

-~ T
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Bloch-Floquet form

A first example
seneral method

General framework

o Eigen-vector of T, satisfies Bloch condition
$(a +a) = e"¢(z)
o Alternative form: plane wave times periodic function
¢(a) = e™7U (x)

with U periodic: U(x +a) =U(x) and k = q/a

Topological acoustics



Bloch-Floquet formalism

A first example
General method

General framework
o For a given —m<g<m
e Solution of Bloch condition ¢(q) : = — ¢(g; x)

@ Bloch eigen-value problem

e Bloch Hamiltonian H(q) = Q(q) - H- Q(q)
— (@ projector on g-space

e H(q) as a discrete spectrum:
ej(q) — energy band
(~ frequency bands)
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Bloch-Floquet formalism

A first example
General method

Bloch-Floquet in a nutshell

Bloch waves:

System invariant under x — x + a

@ Look for solution of the form

Pq(z + a) = ey ()

k = ¢/a is Bloch wavenumber
(We call ¢ Bloch wavenumber when no ambiguity)

Bands and gaps:

e Eigen-value problem restricted to ¢q

H(q) - pqg = €(q)pq

(]

Discrete eigen-values ¢;(¢) — bands
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Bloch-Floquet formalism

A first example
seneral method

Application to our 2 examples

@
ky ikg
~ AN B\ B |
oM M
(b) :””””””:
T | 1 | 1 | 1 [
R | 1 | 1 | 1 | |

(a) Discrete: chain of equal masses and alternating springs

(b) Continuous: air channel with changing cross-section
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ample I: masses and springs

Application to examples el 1 SERaETiee

Outline

© Application to examples
e Example I: masses and springs
e Example II: waveguide
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Example I: masses and springs

Application to examples e R pe——s

Outline

@ Bloch-Floquet formalism

© Application to examples
e Example I: masses and springs

© The SSH model
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Example I: masses and springs

Application to examples e R pe——s

Example I
@
y oo
~AMARWMEMA B~
M M

o Translation operator

A A
L
T, : B B
T, = Ty
@ Bloch condition solved for
ah = eMpy
al = Mg




Example I: masses and springs
Example II: waveguide

Application to examples

Example I
@
s s
~AMARVMEMA B~
M M

@ Newton’s second law

P = - aB) b e 08,

b = Dl a2 B ),
o (Recall ¢ = w?.) Bloch eigen-value problem

epa = %(SOA —¥B)+ %(@A — e Mpp),

epp = %(SOB —pa) + %(sms — €'lpy).




Example I: ma and springs
Example II: waveguide

Application to examples

Example I
@
s s
~AMARVMEMA B~
M M

o Bloch Hamiltonian

. 1 k1 + ko —k1 — k2€7iq

Ho) =31 (—k1 — kel ky+ ko

15
.V\
o Eigen-values '
3
) n k1 + koe| 05
M M
0 2 0 2
q
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Example I: masses and springs
Example II: waveguide

Application to examples

Example 1
@
| s o
BV B
M M

o Simplify the model:
define wg = (k1 + k2)/M (mean frequency)

o Redefine e = 1 — w?/w? (relative frequency shift)

@ Then the Bloch Hamiltonian becomes

0 s+ te
H(q) = <s + te'd 0 )

— This is the Su-Schrieffer-Heeger (SSH) model
— We will study this model in depth
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Example I: masses and springs

Application to examples Byl 1 FEmeameke

Outline

@ Bloch-Floquet formalism

© Application to examples
e Example II: waveguide

© The SSH model
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Example I: masses and springs
Example II: waveguide

Application to examples

Example 11
a

(b) —

L
I
I

o Translation operator
Ta : p(z,y) = p(z + a,y)
@ Bloch condition
p(z +a,y) = “p(x,y)

o Alternative form

p(z,y) = U (z,y)

Topological acoustics



Application to examples Example I: masses and springs

Example II: waveguide

Example 11
a 12
(b) " .
| | .
0D 4
/ 2
| 1 0
! ] 2 0 2
L. | q
o Eigen-value problem
ep = —A¢ on D
O = 0 on 01D
oz +ay) = elo(z,y) on 0D

Topological acoustics



Example I: masses and springs
Example II: waveguide

Application to examples

Example 11

(b) : 7(:7(-3}171}1?{1%)(31; f”,‘

T ] 1,0 J | [
I P RN T
°r, - Lol ° °

L U > !
. | J L | J L.

I

I

o Simplification for narrow tubes L < a
e Along a piece of tube (constant section)

p// + ka =0
o Cross-section changes: p and acoustic debit continuous

Llu;‘ = LQU/X
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Example I: masses and springs
Example II: waveguide

Application to examples

Example 11

(b) : 7(:76}17 m }I{lp er 51,7‘

LI L
I | P [ e u— i
°r, e e Lo ° . .

L UAV—HIL‘ I
. L | J L.

I

I

o Integrating along tubes

A

epiy = tpl i +sph
A A

5p7§ = tpn—‘rl + SPn,

e With € = cos(wa/2cp) and




Application to examples pllo) 13 ket "3“'1 SPTIngs

Ex
Example II: waveguide

Example 11

cell number n
(b) clbmber |
! I
| |

| ! .

g D ey R —
| Pn D ! Pt J s
.L’) — Ld L e | L] L]

Ly - Uy I

| ] L | | ] |
T
I
I
I

o Bloch problem — SSH model again

o (Pa) — 0 s+te U (pa
pB s+ te' 0 pB

:8
= 0
5 —

4

2

0




Bloch modes

Boundary effects

The SSH model

Outline

© The SSH model
@ Bloch modes
e Boundary effects

Antonin C ant Topological acou



Bloch modes
Boundary effects

The SSH model

Outline

@ Bloch-Floquet formalism

© Application to examples

© The SSH model
@ Bloch modes
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Bloch modes
Boundary effects

The SSH model

Lattice model

,,,,,,,,,,,,,,,,,

(70111)ling

degree of freedom
o Eigen-value problem e = H - ¢

e (1) o—t_o(m,p): (n,plHn, )=t
pn=Aor

(n> :u) .—5. (nlv ) <TI,, u|H|n’, :ul> =S5
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Bloch modes
Boundary effects

The SSH model

n*h unit cell

o Figen-value problem ¢¢ = H - ¢

cpit = tdpB | + spB

ep) = top + 56
o Assume s >0 and ¢t >0
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Bloch modes
Boundary effects

The SSH model

nt unit cell

A B A B/'A B'A B A B

@ Bloch condition

o = Mg

6 = g

o Bloch eigen-value problem

S(Pa) 0 s+te\ (pa
B s+ te'? 0 ¥B
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Bloch modes
Boundary effects

The SSH model

nt® unit cell

S(PA) 0 5+ te [ pa
YB s+ te' 0 vB

1
0.5
o As before: two bands and a gap
€=%s+ teiq‘ 05
e Gap between +|s — | TS 0 2
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Bloch modes

The SSH model Boundary effects

Outline

@ Bloch-Floquet formalism

© Application to examples

© The SSH model

e Boundary effects
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Bloch modes

The SSH model Boundary effects

Finite chain

e

o
B A

e
4;;4‘;4
W e
> e

o Going back to masses and spring system

o Boundary conditions: last masses attached to hard walls

Topological acoustics



Bloch modes

The SSH model Boundary effects

Finite chain

o FEigen-value problem ¢¢ = H - ¢

epn = sop+tel . (2<n<N)
epf = sep +ten,,  (1<n<N-1)

and at the edges

A B
Py = 59
B A
EON = SPN
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Bloch modes
Boundary effects

SH model

Finite chain

:333.300
B'A B A B A B

e Comparing Bloch spectrum witlr-finite spectrum

1 : : 1
T
%
05 0.5 2
W 0 W 0 »
0.5 -0.5 "
i
i
1 '
2 0 2 -1

q
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Bloch modes

Boundary effects

The SSH model

Bloch-Floquet method

Periodic systems

(]

Bloch condition

(]

¢z +a) = e'¢(x)
Bloch eigen-value problem e(q)p = H(q) - ¢

£(q) gives energy bands (~ frequency bands)
The SSH model
Two bands

Finite systems: edge effects?
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Bloch modes
Boundary effects

SH model

That’s all folks

Some references:
@ Bloch-Floquet:
[I)("\'mi(‘r “Acoustic metamaterials and phononic crystals” (2013)]
[A\sh(‘ruh. Mermin “Solid state physics” (1976)]
o Reviews with treatment of SSH model:
[As])ulh Oroszlany, Palyi “A short course on topological insulators”
(2016)]
U);l]i])m'(l “La matiere topologique et son exploration avec les gaz

quantiques” (2017)]
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